*AP Calculus BC (#9550)

Description	This course is an in-depth development and extension of the concepts of calculus that were introduced to the students in Introduction to Calculus. Topics from both differential and integral calculus comparable to a two-semester college offering are studied. Students may elect to take an Advanced Placement Calculus (AB or BC) Examination in May for possible college credit.	
Credits	1	
Prerequisites	AP Calculus AB or (PreCalculus with approval of both PreCalculus and AP Calculus instructor	
Textbooks/Resources	Sullivan, Michael & Miranda, Kathleen. <i>Calculus.</i> 2 nd Edition Bedford, Freeman & Worth High School Publishers, 2017 (ISBN 978-1-4641-4226-0)	
Required Assessments	District Wide Assessment created by AP Calculus teachers	
Board Approved	May 1997	
Revised	April 1999; April 2008, November 2009, May 2018	

AASD Mathematics Goals for K-12 Students

When engaging with Mathematics, students in the Appleton Area School District will ...

- Make sense of problems and persevere in solving them
- Use numbers and words to reason and make sense of problems
- Explain own mathematical thinking and critique the reasoning of others
- Recognize and use mathematical models
- Use appropriate tools and strategies
- Clearly and precisely communicate ideas when solving problems
- Look for structure and patterns
- Create more efficient strategies

AASD Mathematics Standards for Grades 9-12 Students

Mathematical Practice Standards

- 1. Make Sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Mathematics Content Standards		
Domain Cluster		
I. Number and Quantity	A. The Real Number System	
	B. Quantities	
	C. The Complex Number System	
II. Algebra	A. Seeing Structure in Expressions	
	B. Arithmetic with Polynomials and Rational Expressions	
	C. Creating Equations	
	D. Reasoning with Equations and Inequalities	
III. Functions	A. Interpreting Functions	
	B. Building Functions	
	C. Linear, Quadratic, and Exponential Models	
	D. Trigonometric Functions	
IV. Geometry	A. Similar Right Triangles and Trigonometry	
	B. Expressing Geometric Properties with Equations	
	C. Geometric Measure and Dimension	
	D. Modeling with Geometry	

Essential Learning Objectives	Performance Indicators	Classroom Assessments
1. Develop deep conceptual understanding of calculus by engaging in mathematical practices of AP Calculus.	 Performance will be satisfactory when the student: a. use definitions and theorems to build arguments, to justify conclusions or answers, or to prove results. b. connects concepts by identifying the underlying structure of a problem. c. determines appropriate strategies while implementing algebraic and computational processes correctly d. connects multiple representations by developing concepts using symbolic, graphical, and numerical representations with and without technology. e. builds notational fluency to use and interpret different notations within context. f. communicates effectively using mathematical language within reasoning and/or justification. 	All assessments

Objectives are linked to the Mathematical Practices Standards

Essential Learning Objectives	Performance Indicators	Classroom Assessments
	Performance will be satisfactory when the student:	
2. Apply the properties of functions,	g. reviews the properties of functions.	Unit assessment
graphs and limits.	h. reviews the properties of graphs.	
	i. develops an intuitive understanding of the limiting process.	
	j. estimates limits from graphs or tables of data.	
	k. calculates limits using graphical, numerical, or algebraic	
	techniques.	
	I. describes asymptotes in terms of graphical behavior, infinite	
	limits, and limits at infinity.	
	m. compares exponential, polynomial and logarithmic growth.	
	n. defines continuity in terms of limits: $\lim f(x)=f(a)$.	
	x→a	
	o. interprets graphically and algebraically continuous functions,	
	Intermediate Value Theorem and Extreme Value Theorem.	
	p. analyzes planar curves utilizing rectangular, parametric,	
	polar and vector forms.	
Objectives are linked to the following	AASD Mathematics standards:	
I. Number and Quantity; II. Algebra; III.	Functions, IV. Geometry	

Essential Learning Objectives	Performance Indicators	Classroom Assessments
Essential Learning Objectives 3. Develop the concept of derivatives.	 Performance Indicators Performance will be satisfactory when the student: a. defines the derivative in terms of the limit of the difference quotient. b. explores the relationship among limits, continuity and differentiability. c. finds the derivative at a point as it applies to the slope of a curve. d. determines the tangent line to a curve at a point and a local linear approximation. e. interprets instantaneous rate of change as the limit of average rate of changes. f. investigates corresponding characteristics of the graphs of f, f' and f". g. determines the relationship between the increasing and decreasing behavior of f and the sign of f'. h. determines the relationship between the increasing and decreasing behavior of f and the sign of f". i. finds critical and inflection points. j. applies the Mean Value Theorem. k. proves the basic rules for the derivative of sums, products, and quotients of functions. l. applies the basic rules for the derivative of sums, products, and quotients of functions. m. computes derivatives of polynomial, circular, logarithmic, exponential, parametric, polar, and vector functions. n. applies the Chain rule and implicit differentiation. 	Classroom Assessments Unit assessment
Objectives are linked to the following I. Number and Quantity; II. Algebra; III.	AASD Mathematics standards: Functions, IV. Geometry	

Essential Learning Objectives	Performance Indicators	Classroom Assessments	
	Performance will be satisfactory when the student:		
4. Apply derivatives in solving real	a. analyzes curves, including the notions of slope, monotonicity	 Unit assessment 	
world problems.	and concavity.		

b.	analyzes planar curves given in parametric form, polar form,	
	and vector form, including velocity and acceleration vectors.	
C.	interprets the derivative as a rate of change in varied applied	
	contexts.	
d.	identifies both absolute (global) and relative (local) extrema.	
e.	models rates of change, including related rates problems.	
f.	uses implicit differentiation to find the derivative of an	
	inverse function.	
g.	applies l'Hopital's Rule to indeterminate forms.	
h.	analyzes differential equations geometrically via slope fields,	
	numerically using Euler's Method, and algebraically for the	
	separable variety.	
Objectives are linked to the following AAS	SD Mathematics standards:	
I. Number and Quantity; II. Algebra; III. Fur	nctions, IV. Geometry	
, , , , , , , , , , , , , , , , , , ,		

Essential Learning Objectives	Performance Indicators	Classroom Assessments
	Performance will be satisfactory when the student:	
5. Interpret the concepts of	a. finds antiderivatives utilizing basic derivative rules.	Unit assessment
integrals.	b. develops the concept of a Riemann sum over equal	
	subdivisions.	
	c. computes Riemann sums using left, right and midpoint evaluation points.	
	d. defines an integral as a limit of Riemann sums.	
	e. uses Riemann sums with Simpson's Rule and the	
	Trapezoidal Rule to approximate definite integrals of	
	functions represented algebraically, geometrically and numerically.	
	f. uses the Fundamental Theorem of Calculus to evaluate	
	definite integrals.	
	g. uses the basic properties of definite integrals in evaluation.	
	$g(x) = \int_{a}^{x} f(t) dt.$	
	i. determines antiderivatives by substitution of variables	
	(including changes of limits for definite integrals), parts, and	
	simple partial fractions (nonrepeating linear factors only).	

AASD MATHEMATICS CURRICULUM

j	 evaluates, if possible, improper integrals as limits of definite integrals. 		
Objectives are linked to the following AASD Mathematics standards:			
I. Number and Quantity; II. Algebra; III. F	unctions, IV. Geometry		

Essential Learning Objectives	Performance Indicators	Classroom Assessments
	Performance will be satisfactory when the student:	
6. Apply integrals in solving real	a. finds specific antiderivatives using initial conditions,	Unit assessment
world problems.	including applications to motion along a line.	
	b. solves separable differential equations.	
	c. uses separable differential equations in modeling, especially	
	when applying the equations y'=ky and exponential growth.	
	d. solves logistic differential equations.	
	e. uses logistic differential equations in modeling.	
	f. find the area of a region (including a region bounded by	
	polar curves).	
	g. finds the volume of a solid with known cross sections.	
	h. finds volumes of solids of revolution using disc and washer	
	methods (and shell method if time allows).	
	i. finds the average value of a function.	
	J. determines the length of a curve (including parametric curves).	
	k. determines the area of a surface of revolution.	
	I. utilizes appropriate integrals in a variety of applications to	
	model physical, social or economic situations.	
Objectives are linked to the following	AASD Mathematics standards:	
I. Number and Quantity; II. Algebra; III.	Functions, IV. Geometry	
	· · · · · ·	

Essential Learning Objectives	Performance Indicators		Classroom Assessments
	Performance will be satisfactory when the student:		
7. Explore the concept of	a. defines a series as a sequence of partial sums.	•	Unit assessment

Pending Board Approval June 2018

polynomial approximations and	b.	defines convergences as a limit of the sequence of partial	
series.		sums.	
	C.	utilizes the geometric, harmonic, alternating or p-series in	
		determining convergence or divergence.	
	d.	determines convergence or divergence utilizing the ratio,	
		root or integral test.	
	e.	determines absolute convergence vs. conditional	
		convergence when a series converges.	
	f.	represents a function as a Taylor approximation.	
	g.	produces the Maclaurin series for the functions e ^x , sin x, cos	
		x, and 1/(1-x).	
	h.	manipulates Taylor series by employing differentiation,	
		integration, and the formation of new series from known	
		series.	
	i.	determines the radius and interval of convergence for power	
		series.	
	j.	examines the Lagrange error bound for Taylor polynomials.	
Objectives are linked to the following	AAS	D Mathematics standards:	
I. Number and Quantity; II. Algebra; III.	Fur	ctions	

Resources and learning activities that address course objectives:

<u>AP College Board AP Calculus BC Curriculum Framework</u> <u>https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-calculus-ab-and-bc-course-and-exam-description.pdf</u>